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1.0 Executive Summary

1.

The area of computational toxicology has undergone a lot of scientific developments over
the past few decades. As a result, a vast range of models, methods, and tools based on in
silico approaches are now available that offer a rapid, cost-effective, and ethical alternative
to animal testing of chemical substances - including cosmetic ingredients.

Various regulatory frameworks in different ICCR countries have a commitment to adhere to
3Rs principles®, and to promote the use of alternative means for assessing safety of
chemical substances instead of testing on animals. In Europe, animal testing of cosmetic
ingredients/ products, and marketing of new cosmetic ingredients/ products tested on
animals is now banned.

The usefulness of structure-activity modelling and other in silico (computational) methods as
an alternative to testing chemical toxicity in animals has been recognised both by industry
and regulators worldwide. This has also been identified as one of the main alternative routes
to cosmetic safety assessment in the ICCR-5 report 'Principles of Cosmetic Safety
Assessment’?.

In view of the importance of this field, this joint industry-regulator Working Group (WG)
carried out an appraisal of the current status of in silico approaches in regard to their
relevance and use in safety assessment of cosmetic ingredients within the ICCR
jurisdictions. This capability review is meant to provide a basis for development of a
roadmap for the eventual application of in silico methods in the safety assessment of
cosmetic ingredients.

The main approaches that allow in silico assessment of chemical toxicity include
computational models based on structure-activity relationship (SAR), or quantitative
structure-activity relationship (QSAR), and other in silico tools e.g. for mining large chemical
toxicity databases and for a ‘read-across’ from experimental data on structurally and/or
functionally similar compounds. Also available are toxicity expert systems that combine
different structure-activity based rules, approximations, and/or (Q)SAR models. These
versatile in silico models, methods, and tools are available both as commercial and free-
access software platforms.

The appraisal showed that the available in silico systems cover a wide range of chemical
structure space and majority of the toxicological endpoints that are normally considered in
the safety assessment of cosmetic ingredients.

The development and use of in silico methods requires a thorough consideration of quality
and validation of the data and the resulting models and tools, and whether the chemical
structure and toxicological space contained within the model's applicability domain
adequately covers a given query chemical structure.

In this regard, the WG recognises that there is a large number of in silico methods
referenced in the literature that might be useful for toxicity assessment of cosmetic
ingredients. However, this report is limited to an overview of those relevant approaches that
are currently under common use. The description of any model or system in this report is,
therefore, only meant to provide a general overview and not an endorsement of quality or a
recommendation for use as such.

Despite a lot of advancements in this field, and the need and the drivers for alternative
methods for safety assessment of cosmetics, the current use of in silico approaches is

! Replacement, Refinement and Reduction of the use animals in laboratory procedures
2 http://ec.europa.eu/consumers/sectors/cosmetics/files/pdf/iccr5_safety en.pdf
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largely limited to internal decision making both at the industry and the regulatory levels in
most ICCR jurisdictions.

The lack of full adoption of in silico approaches as a mainstream alternative to safety
assessment of cosmetic ingredients on animals appears to be for two main reasons:

a. The current availability of models and tools that have been developed under
stringent quality and validation criteria, such as those laid out by the OECD, is limited
to only a handful that can be considered of suitable quality to merit use as a routine
alternative to in vivo testing for safety assessment of cosmetics.

b. Different models and systems sometime tend to yield conflicting results, which
makes it difficult for a user to choose a particular in silico system in preference to the
others, or to rely on its predicted estimates in a safety assessment. This is because
each model and system is generally built on a different dataset and algorithm(s), and
therefore tends to decipher and interpret the chemical structure and toxicological
information in a different way. Each model/system also reflects a different level of
uncertainty and variability associated with the data used in developing it, and the
modelling process itself, and may also have a different applicability domain within
which the predicted estimates of toxicity are reliable.

It practice, however, some of these limitations can be addressed; for example, in silico
assessments may be drawn from those models and systems that meet the stringent quality
and validation standards and have clearly defined applicability domains. Although this may
limit the number of workable in silico tools, it should provide more confidence in the
predicted estimates. It may also be possible to add more confidence to the in silico
assessments through the use of a combination of appropriate (Q)SAR models, expert
systems, and/or read-across approaches, rather than relying on a single model/system. A
‘weight of evidence’ gathered this way should provide sufficient basis for a reliable in silico
assessment of chemical toxicity for safety evaluation.

It needs to be emphasised that the development, use, and interpretation of the results of in
silico approaches requires a skilled approach and expert knowledge of toxicology and
(bio)chemistry. Thus, despite the ease of use offered by certain advanced in silico platforms,
the assessment of toxicity by in silico approaches must not be reduced to a ‘black box’
routine.

Further work in this area is recommended in relation to development of a uniform and
standardised approach that allows the selection and use of appropriate in silico system(s),
and interpretation of the results from a safety assessment perspective. In addition, a
framework also needs to be developed that allows integration of different in silico
approaches in a consistent scheme to collate sufficient weight of evidence against relevant
toxicological endpoints for use in safety assessment of cosmetic ingredients.

2.0 Introduction

The International Cooperation on Cosmetic Regulation (ICCR) held its sixth annual meeting
(ICCR-6) July 10-13, 2012 in Rockville, Maryland, U.S.A. to discuss issues related to cosmetics
and cosmetic-like drug/quasi-drug products.

As part of the meeting, FDA made a presentation on the current “state of play” of QSAR and “in
silico” technologies in the safety assessment of cosmetic ingredients. Further it was noted that
recent peer-review publications and public presentations including those at the 2012 Personal
Care Products Council Regulatory Science Summit (March 29, 2012, Bethesda, MD) and at the
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124th Meeting of the Cosmetic Ingredient Review (CIR) Expert Panel (March 5, 2012,
Washington, DC) confirm that “in silico” technologies relevant to cosmetics safety assessment
are being explored in Europe by the EC-JRC, and in the U.S. by FDA-CFSAN and —CDER and
EPA as well as by other U.S. federal agencies.

Therefore ICCR proposed that the topic of “in silico” computational toxicology tools be
introduced to the ICCR Agenda.

2.1 Purpose

The purpose of this WG is to explore suitability of the various available in silico approaches for
assessing the safety of ingredients intended for use in cosmetics.

2.2 Scope

The main task of this WG is to carry out a review of the existing in silico methods that are
available and in use for suitability in relation to assess the safety of cosmetic ingredients.
Although an account of the different relevant in silico approaches will be taken, the work of the
WG will focus on general evaluation of the approaches, and not on the assessment of any
specific methods, models, or tools. The WG will also aim to propose a tiered approach based on
selected methods that can be useful in screening/ prioritization, and potentially in higher tier
safety assessment of cosmetic ingredients. For this, the WG will also explore possible
integration of the different in silico methods, models, and tools so that limitations of individual
approaches can be overcome, and sufficient ‘weight of evidence’ generated to underpin
reliability of the in silico assessments.

2.3 Approach

To achieve the objectives set out by this WG, the members met via audio-conferences, and
discussed and developed a consensus on the in silico approaches that can be useful for
assessing the safety of cosmetic ingredients.

The WG in their approach aimed to:

1. ldentify those high priority endpoints from the list of toxicological endpoints routinely
assegsed for cosmetics for which in silico methods are already available and being
used”.

2. Define the scope of the report in terms of the different types of in silico approaches that
can be useful in safety assessments (e.g. QSAR & expert systems, biokinetic
modelling®, molecular modelling). Summarize the strengths as well as limitations of the
approaches”. Indicate how their quality (including the uncertainty) is being assessed and
reported.

3. Develop an “activity matrix” that summaries, for the priority endpoints, the major ongoing
or recently completed projects in the ICCR regions (including the regulatory authorities
and industry associations) that are either developing in silico tools and/or exploring their
applicability relevant to the safety assessment of cosmetics. This will include projects

® The development of new methods is outside the scope of this activity.

* This includes the modeling of internal exposure, and in vitro-in vivo extrapolation, thereby providing
a basis for risk assessment based on alternative methods.

® This will involve a general evaluation of the approaches, not focussed on specific methods, models or
tools



2.4

2.5

In silico-QSAR WG/Final report

that may be focused specifically on cosmetics, as well as those methods, models and
tools that could be indirectly applicable to cosmetic ingredients.

Briefly describe each project, with supporting references and web links.

Briefly describe each selected method in a systematic way?®, including the tier(s) in which
it can be used, and the type of assessment it can support (hazard identification, potency
classification, and/or risk assessment)

Identify data/knowledge gaps in terms of our ability to assess the suitability of in silico
approaches for assessing cosmetics.

Make recommendations for further work needed by the ICCR (if any).

Timelines:
Scoping document to be discussed at ICCR 7 (Japan, July 8-10, 2013)

Report to be drafted by ICCR-8, 2014.

Authors:

Renata Teixeira do Amaral Brazilian Association of Personal Cosmetics, Toiletry and
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Development Group, Japan.

Qasim Chaudhry (Chair): The Food and Environment Research Agency, Sand Hutton, York

Y041 1LZ, United Kingdom.
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® The QSAR Model Reporting Format, or simplified version of this, could be an option:
http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/qsar_tools/QRF



In silico-QSAR WG/Final report

Cassia Roesler: Brazilian Health Surveillance Agency, General Office of
Cosmetics, SIA Trecho 5, Area especial 57, Lote 200, CEP:
71205-050; Brasilia — DF — Braazil.

Eric Vaillancourt: Health Canada, Risk Assessment Division, Risk Assessment
Bureau, Consumer Product Safety Directorate, 269 Laurier Ave.
West, 7th floor, 7-101, Ottawa (Ontario) K1A 0K9, Canada.
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3.0 Insilico Methods
3.1 (Q)SAR based models

The chemical structure of a compound carries a lot of information — some of which is not very
obvious per se. This embedded information can be deciphered in the form of numerical
‘descriptors’ of physicochemical parameters, which ultimately determine the properties,
behaviour, and biological activity of a given compound. Such a description of the chemical
structure space of a group of compounds in the form of various descriptors (e.g. steric,
hydrophobic, electronic, topologic, etc) allows modelling the measured data on a specific
biological endpoint to find mathematical relationship(s) between the chemical structure and its
biological activity. The resulting in silico (computational) models may either be based on
structure-activity relationship (SAR), or quantitative structure-activity relationship (QSAR)’.
Other in silico approaches allow read-across from experimental data on structurally and/or
functionally similar compounds to derive estimates of toxicity of an untested chemical.

A typical QSAR model describes quantitative relationship(s) between a chemical structure and
biological activity, and generally takes the form of a linear equation:

Relative Biological Activity = Constant + (C_1,P_1)+ (C_2,P_2) + .... (C_n,P_n)

where the parameters P_1 to P_n are computed for each molecule in the series, and
coefficients C_1 to C_n are calculated by fitting variations in the parameters and the
physicochemical property or the biological activity. However, a structure-activity relationship
could also be non-linear.

An SAR model on the other hand describes qualitative relationship(s) between a chemical
structure and biological activity. In its simplest form, an SAR takes the form of a ‘structural alert’,
which represents a distinctive feature in a molecule that bears a relationship with its biological
activity.

" For introduction to theory and applications of QSARs see Benfenati (2012).
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Since early developments in this field in the 1960s, many more reliable chemical property/effect
databases, powerful data-mining tools, linear and non-linear algorithms, and soft-computing
techniques that can decipher relational patterns in large and complex datasets have become
available. These, combined with increasing computational power, have led to the development
of more versatile and reliable in silico methods and tools for the assessment of chemical toxicity.
The (Q)SAR approaches have also progressed from modelling a few physicochemical
properties of closely related compounds, and endpoints at the molecular level (e.g. enzyme
inhibition, or receptor binding), to more diverse chemical structures and complex toxicological
endpoints in whole organisms. Linear algorithms, such as multiple regression, are generally
useful for modelling numerical and continuous biological data (e.g. LD50), whereas description
of discrete response (e.g. active/inactive, weak/moderate/strong) generally requires decision
trees, neural networks, support vectors, or clustering algorithms, etc®. The in silico modelling
approaches have also enabled the assessment of other toxicity modulating factors, such as
absorption, distribution, metabolism and elimination (ADME) in live organisms. As a result, in
silico methods and tools are increasingly seen as an important alternative to testing safety of
chemical substances in animals. As such, they offer a rapid, cost-effective, and ethical
alternative to animal testing. A number of in silico models and systems are currently available,
which cover a wide range of chemical space and are therefore valuable for assessment of a
variety of chemical substances — including cosmetic ingredients.

3.1.1 Mechanistic vs statistical QSARs

Although multidimensional QSARs developed using molecular structure descriptors and
regression analysis techniques have found wide utility and acceptance, it is often difficult to
extract a physical interpretation of such models because of the types of descriptors involved and
the multidimensional nature of the model. Such models are referred to as statistical. In contrast,
mechanistic QSARs are based on a mechanistic hypothesis that drives the choice of
descriptors. A good discussion on this subject is provided by Lipnick (1999).

3.1.2 Model validation

Once developed, (Q)SAR models are generally subjected to rigorous testing for robustness and
predictivity, and a clear description of the ‘applicability domain’, which is the biological response
and chemical structure space within which a model makes predictions with a given reliability
(Netzeva et al., 2005). A fully tested and validated (Q)SAR model would generally yield good
predictive assessment of the toxicity of an untested chemical as long as the query compound
falls within the domain of the model’s prediction space. Thoroughly tested and validated (Q)SAR
models therefore a valuable means for predicting the biological activity (including toxicity) of
untested chemicals within the bounds of the chemical structure space covered by the model.
This also means that each model carries certain limitations and boundaries, and in respect to
the chemicals space it covers, and may not perform reliably when used against chemicals that
are outside the model’s applicability domain. It is, however, possible to address some of these
limitations in practice — e.g. through the use of a combination of different (Q)SAR models, expert
systems, and read-across approaches to derive sufficient ‘weight of evidence’ that can provide
basis for a reliable in silico assessment of chemical toxicity.

8 For further reading on the choice of different statistical algorithms for QSAR building see Chaudhry et
al. (2007).
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3.1.3 Availability and currents use

A variety of (Q)SAR based models and expert systems are available for predicting a range of
toxicity endpoints. These include both free access and commercial software platforms. For in
silico assessments intended for regulatory purposes, the (Q)SAR models generally considered
relevant are those that have been developed in accordance with the stringent quality criteria and
validation principles, e.g. those laid down by the OECD (2004). The OECD’s ‘Guidance
Document on the Validation of (Q)SAR Models’ published in 2007 aims at providing further
guidance on how specific QSAR models can be evaluated with respect to the OECD principles.

The use of (Q)SAR models as an alternative approach to testing chemical toxicity on animals
has been promoted by regulatory authorities in a number of countries. In Europe, the use of in
silico approaches for assessment of chemical toxicity has come into focus due to the ban on
testing cosmetic ingredients and products on animals. The use of validated (Q)SARs is currently
allowed under certain provisions of some European regulations, e.g. the chemicals Regulation
REACH. Also in Europe, the Danish EPA has produced a comprehensive set of QSAR models
for their ‘self-classification system’ of industrial chemicals. This database is now incorporated in
to the OECD QSAR Toolbox. Other examples of the use of (Q)SAR models within the ICCR
jurisdictions is provided in section 4.2. It is however worth highlighting that, despite substantial
advancements in this field, and the need for suitable alternatives to animal testing, the use of
(Q)SAR models has still not been fully adopted as a mainstream method for safety assessment
of cosmetic ingredients in any of the ICCR’s jurisdiction. They are, however, being applied by
many as screening tools for internal decision making and as important elements for
development of a weight of evidence (WoE) for risk assessment. A number of projects have
made some inroads into the application of this field in relation to safety assessment of
cosmetics. For example considerable work has been done on fragrance allergens, and progress
at the EU level can be seen in the specialist Cosmetic Sector reports of ECVAM®. The potential
application of in silico methods for safety assessment of cosmetic ingredients has also been
mentioned in the Preamble of the SCCS Memorandum on "Alternative test methods in human
health safety assessment of cosmetic ingredients in the EU" (SCCS/1294/10).

3.2 Expert systems

An expert system has been defined as any formalised system that is often, but not necessarily,
computer based, and that can be used to make predictions on the basis of prior information
(Deaden et al., 1997). In silico toxicology expert systems may combine different approaches to
predict toxicity of a substance from chemical structure. The expert systems (and their
implementation in software tools) are based on three main modelling approaches referred to
rule-based, statistically-based, or hybrid methods.

Rule-based systems contain “if-then-else” rules that have been derived from toxicological
knowledge, and combine them with expert judgment and/or fuzzy logic. Commonly used
software tools based on this approach include OncoLogic (Woo et al. 2005), Derek Nexus®
(Sanderson & Earnshaw 1991; Ridings et al., 1996) and HazardExpert (Smithing & Darvas
1992). Derek Nexus® and HazardExpert can be used in conjunction with their related programs
Meteor and Metabolexpert to predict the toxic potential of metabolites as well as the parent
compounds. In addition to these commercial tools, many of the models included in the freely
available Toxtree software and the OECD QSAR Toolbox are rule-based. An example is the
Benigni-Bossa rulebase for genotoxicity and carcinogenicity (Benigni et al., 2008).

Statistically-based systems use a variety of statistical, rule-induction, artificial intelligence, and
pattern recognition techniques to build models from non-congeneric databases. Statistically
based systems are included in the commercial tools MultiCASE and TOPKAT, and the publicly
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available Lazar and CAESAR models. In addition, many models published in the scientific
literature, but not (yet) implemented in software are statistically based.

Hybrid models are based on a combination of knowledge-based rules and statistically-derived
models. These are based on the general idea that, within the structural space of a single
structural alert (considered to represent a single interaction mechanism), statistically derived
models can quantitatively predict the variation in the reactivity of the alert conditioned by the rest
of the molecular structure. Examples of the hybrid approach include models implemented in
OASIS TIMES (Patlewicz et al., 2007).

The advantages and disadvantages of these approaches are summarised in Table 1.

Table 1. Comparison of three main approaches used in expert systems

Approach Advantages Disadvantages
Rule-based mechanistically connected to the often restricted and/or ill-defined
predicted endpoint applicability domain
provide reasoning  for  the usually cannot explain differences of
predictions the activity within a chemical class
in many cases support the usua_lly have Iower accuracy of the
prediction with literature prediction than statistical models
references or expert knowledge
Statistical usually have high accuracy of the usually difficult to interpret the model
predictions predictions
can be used for preliminary often do not provide mechanistically
research when mechanism of reasoning of the predictions
action is unknown often non-transparent to the end-user
Hybrid combines advantages of rule- likely to have restricted applicability
based and statistical approaches, domain
including mechanistic
interpretability (for SA part), and
overall accuracy

3.3 Read Across

Over the past decades, enormous amount of information relating to physicochemical properties
and toxicity of chemicals has been collated in the form of extensive databases. In addition to
being useful as data resources, they also provide a means for estimating the toxicity of an
untested chemical by drawing parallels from the measured data on other tested chemicals.
Such a ‘read across’ inevitably needs a tight category of already tested chemical analogues that
are structurally and/or functionally related to the untested query chemical. The OECD QSAR
ToolBox is an example of a versatile suite of programs which can also predict various toxicity
endpoints based on read-across using a substantial set of high quality databases. The users
may import additional databases into the toolbox to expand its usefulness. The ToolBox allows
identification of analogues for a given chemical, retrieve available experimental data for the
analogues, and fill data gaps by read-across or trend analysis. The use of read across has
become more common in predictive toxicology. In comparison to QSAR programs that use
groups of analogues as a source from which to derive mathematical relationships, read across
uses analogues directly to predict endpoints for the target. For this reason, it is most important
that groups or categories of analogues are carefully assembled taking into account not only
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structural similarity, but where possible, also mechanistic similarity. Read across predictions are
not possible where close analogues of the target compound cannot be found in the databases.

3.4 Important considerations

3.4.1 Data and Model Quality

The reliability and robustness of in silico predictive models is intrinsically dependent on the
quality of the data used in building and validating the model. This applies to data on chemical
identity, structure, descriptors, biological activity, statistical algorithms used in building the
model, and the degree to which the model was tested and validated. Thus whilst good quality
data are essential for (Q)SAR model building, it also need to be remembered that each model
also reflects the variability and uncertainty within the chemical and toxicity data (due to inter-
and intra- species differences, and differences in the experimental protocols used, etc).

The scarcity of good quality toxicity data for a sufficient number of related compounds is often
the main limiting factor in the development of robust and reliable in silico models. A data quality
algorithm has been proposed by Malazizi et al (2006). For in silico model development,
biological test data from good laboratory practice (GLP) is often sufficiently reliable.

Accurate measurement of toxicity in a living organism is intrinsically complex, as a measured
endpoint, such as mortality, may have involved a number of processes and mechanisms.
However, uncertainty in the measurements does not preclude the use of the data in modelling.
As long as the models do not produce false negative predictions, they are generally acceptable
because any false positive predictions will still be on the conservative side in a risk assessment.

Other factors, such as the existence of a chemical in different enantiomeric forms, cannot be
resolved easily by in silico methods, the vast majority of which is based on descriptors derived
from two-dimensional structures. Compared to 2D structures, the use of parameters relating to
3D structures require much a greater effort because it is generally difficult to obtain an optimised
configuration of a given molecule that can be regarded as resembling to its form in ‘real life’.
Generally, 3D modelling approaches use the lowest energy conformation of a chemical
structure, and where available, derive the descriptors from its crystal structure. Certain specialist
in silico systems, such as CoMFA (Comparative Molecular Field Analysis) can consider chirality
and hence can deal with different enantiomeric forms of a chemical. Different tautomeric forms
also present a problem in terms of reliability of in silico assessment as they can co-exist or can
readily interchange from one form to another. Again selecting a structure at the lowest energy
conformation is generally used in modelling to overcome such issues.

In November 2004, the OECD Member Countries agreed on the principles for validating QSAR
models for their use in the regulatory assessment of chemical safety. The internationally agreed
principles provide Member Countries with a consistent and scientifically motivated framework for
evaluating the regulatory applicability of QSAR models.

The OECD Principles for QSAR Model Validation, which are intended to be read in conjunction
with the guidance document, are as follows:

"To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should be
associated with the following information:

1. a defined endpoint;

2. an unambiguous algorithm;

3. adefined domain of applicability;

4 appropriate measures of goodness-of-fit, robustness and predictivity;
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5. amechanistic interpretation, if possible.

Further information on the OECD principles is given on the OECD website
(http://www.oecd.org/env/ehs/risk-assessment/validationofgsarmodels.htm).

3.4.2 Description of Software/Database Version

The acceptability of a (Q)SAR or read across prediction relies, in part, on a transparent
description of the software tool and the process to generate the prediction. It is therefore
important that details are provided on the software version/databases used in any in silico
assessment to keep consistency between assessments. As software platforms may evolve and
become available in different versions, it is very important to document the version used, and if
possible the training set of compounds used, to make the prediction. The same applies to
database versions. Even using the same process, one may reach different conclusions due to
differences in data availability because of the use of different databases. Therefor database
source and the exact version used should be documented in an in silico assessment. This will
not only provide transparency, but will also allow other users to reproduce the results if needed.

3.4.3 Documenting the validity of QSAR models

Although numerous QSAR models have been developed and published in the scientific
literature, and some models have been used in regulatory assessment of chemicals in some
countries for many years, a transparent validation process and objective determination of the
reliability of QSAR models are crucial to further enhance their regulatory acceptance.

The QSAR Model Reporting Format (QMRF) was developed by the JRC and EU Member
State authorities as a harmonised template for summarising and reporting key information on
QSAR models, including the results of any validation studies. The information is structured
according to the OECD validation principles. Further information on the QMRF is given on the
JRC website (http://ihcp.jrc.ec.europa.eu/our labs/predictive toxicology/gsar tools/QRF).

3.4.4 Quantification/ characterization of uncertainty

Until now modelling techniques used in applications to toxicology have been predominantly
deterministic (e.g. classification trees; regression models). A deterministic technique treats
every piece of information at face value and generates a single result for given a set of input
parameters.

However, the fact that deterministic models ignore uncertainty in knowledge and variability in
data is not sufficient to justify the use of probabilistic models in place of deterministic models.
The most important aspect of the model is how it affects decision-making. Deterministic
frameworks are generally sufficient when dealing with single endpoint prediction. However, in
the WoE approach, the need for probabilistic modelling may arise from the aim of placing
knowledge and complex, multifaceted, and mutually dependent data in a systematic, evidence-
based, reasoning framework. Therefore, probabilistic WoE frameworks are more realistic than
the deterministic ones. In a probabilistic WOE, each piece of evidence is used together with its
uncertainty. Deterministic models calculate uncertainty but this information is not conveyed to
the user. As such, WoE would greatly benefit from probabilistic approaches that can provide
predictions with uncertainty, as this would result in improved weighing different pieces of evidence.


http://www.oecd.org/env/ehs/risk-assessment/validationofqsarmodels.htm
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4.0 METHODOLOGY AND APPROACH

4.1 Data requirements for cosmetic ingredients

With the exception of Europe, where animal testing of cosmetic ingredients is banned, safety
assessment of cosmetics in other ICCR jurisdictions relies on toxicological data from animal
tests, and/or in vitro models. Where available, human clinical and epidemiological data is also
used to provide additional information on the toxicological effects of chemicals intended for use
in cosmetic products. These conventional methods, however, involve a lot of time, effort, and
costs. There are further ethical and other constraints to animal testing, such as questions about
predictivity for human risk assessment and the general commitment to the 3Rs principle®. This is
where the use of in silico approaches can be very useful in terms of filling some of the data
gaps. In the context of mapping the current and projected uptake of in silico methods and tools
in regulatory perspective, it is important to consider the current requirements for safety data in
the different ICCR jurisdictions. A brief description of the data requirements for safety
assessment of cosmetic ingredients is provided below:

4.1.1 CANADA

— All cosmetics sold in Canada must be safe to use and must meet the requirements of the
Food and Drugs Act, the Cosmetic Regulations, and the Consumer Packaging and Labelling
Act and Regulations. All intentional ingredients must be listed on the label, and the
manufacturer must notify Health Canada that it is selling the product and provide information
about the product’s formulation.

— Health Canada uses the List of Prohibited and Restricted Cosmetic Ingredients (also known
as the Cosmetic Ingredient Hotlist) to communicate to manufacturers that certain
substances may cause injury to the health of the user, which is in contravention of the
general prohibition in the Food and Drugs Act. Departmental officials closely follow
international scientific and regulatory reports, and regularly review the safety of cosmetic
ingredients.

— Health Canada takes a risk-based approach to regulating cosmetics, considering both the
properties of substances in products, as well as the amounts to which people are exposed
under normal conditions of use, to determine whether there is a risk that needs to be
addressed by the Government. If the scientific evidence suggests that a cosmetic ingredient
may be unsafe, the Department would conduct a review and, where warranted, take action.
This could include banning ingredients or restricting their use, requiring certain labelling
communicating the risk to Canadians, or having the cosmetic product removed from stores.

— The Canadian government launched the Chemicals Management Plan (CMP) to strengthen
efforts to protect human health and the environment from the risks of harmful chemicals,
including those considered to be carcinogenic or those that pose reproductive or
developmental hazards. As a result of the CMP, 24 substances have been added to the
Cosmetic Ingredient Hotlist and two existing Hotlist items have been amended to be more
protective of health. For more information, see: www.chemicalsubstanceschimigues.gc.ca/.

° Replacement, Refinement and Reduction of the use animals in laboratory procedures


http://www.chemicalsubstanceschimiques.gc.ca/
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Data are not requested at the time cosmetic products are notified to Health Canada.
However, when notified product formulations contain ingredients that are subject to a Hotlist
restriction or when incidents are reported, the following information may be requested:

— Physicochemical properties (e.g. formulation pH, salivary peroxide levels)
— Skin irritation (e.g. human patch tests)

— Skin sensitization

— Phototoxicity

— Eye irritation

There are currently no policies/guidelines for the validation or acceptance of in silico models
for cosmetic products, and Health Canada has not yet requested, received or accepted any
such model.

4.1.2 EUROPE

As mentioned before, animal testing of cosmetic ingredients is banned in Europe and testing
must be replaced by alternative methods. The Directive 76/768/EEC, and as of 11 July 2013
the Cosmetics Regulation ((EC) No 1223/2009), prohibits the testing of finished cosmetic
products and cosmetic ingredients on animals (testing ban), and prohibits the marketing in
the European Community, of finished cosmetic products and ingredients included in
cosmetic products that were tested on animals (marketing ban). The testing/ marketing bans
apply irrespective of the availability of alternative non-animal tests.

Besides the Cosmetics legislation, Article 7 of the Council Directive 86/609/EEC provides for
the protection of animals used for experimental and other scientific purposes ‘an animal
study shall not be performed if another scientifically satisfactory method of obtaining the
result sought, not entailing the use of an animal, is reasonable and practically available’.
Directive 86/609/EEC has been repealed as of 1 January 2013 and replaced by Directive
2010/63/EU on the protection of animals used for scientific purposes, which in Article 4
contains the principles of replacement, reduction and refinement (3Rs).

The toxicological endpoints that need assessing in a safety dossier in Europe include:

- Acute toxicity (oral; inhalation; dermal)

- Corrosivity and irritation (Skin corrosivity and skin irritation; Mucous membrane
irritation, eye irritation)

- Skin sensitisation

- Dermal/ percutaneous absorption

- Repeated dose toxicity

- Mutagenicity/genotoxicity

- Carcinogenicity

- Reproductive toxicity

- Toxicokinetic studies

- Photo-induced toxicity (Phototoxicity (photoirritation) and photosensitisation;
Photomutagenicity/ Photoclastogenicity)
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41.3 JAPAN

Under the Japanese cosmetics regulation, the safety standards of cosmetic ingredients
consist of both positive lists (only for antiseptics, ultraviolet absorbents and tar dyes) and
negative lists. In addition, medicinal compounds, non-standardized biological materials, and
any prohibited substances under other chemical related laws are forbidden.

Chemicals in the positive list and medicinal compounds may be allowed with restricted
concentrations. Data on other substances is needed.

Some exemptions of the specific endpoints and some alternatives to in vivo tests due to
scientific and/or ethical reasons may be permitted, although any official statement or
assessment guidance about those issues has not been issued.

Regarding a quasi-drug, data on the list will be required as well as positive list, though some
endpoints are can be omitted.

— Phys-chem properties

— Single dose toxicity

— Repeated dose toxicity

— Reproductive/ developmental toxicity
—  Skin irritation

— Skin sensitization

— Photo toxicity

— Photo sensitization

— Eye irritation

— Genotoxicity

— Human patch tests

— ADME(Absorption, Distribution, Metabolism and Excretion)

414 USA

Under the U.S. Federal Food, Drug, and Cosmetic Act (FD&C Act), cosmetic products and
ingredients are not subject to FDA premarket approval authority, with the exception of color
additives (other than those intended for use as coal tar hair dyes). However, they must be
safe for consumers under labeled or customary conditions of use.

In general, except for color additives and those ingredients which are prohibited or restricted
from use in cosmetics by regulation, a manufacturer may use any ingredient in the
formulation of a cosmetic provided that the ingredient and the finished cosmetic are safe,
the product is properly labeled, and the use of the ingredient does not otherwise cause the
cosmetic to be adulterated or misbranded under the laws that FDA enforces.

In addition, regulations prohibit or restrict the use of several ingredients in cosmetic products
and require warning statements on the labels of certain types of cosmetics. Neither the
law nor FDA regulations require specific tests to demonstrate the safety of individual
products or ingredients. Rather, FDA has consistently advised manufacturers to use
whatever testing is necessary to ensure the safety of their products and ingredients. Firms
may substantiate safety in a number of ways. FDA has stated that "the safety of a product
can be adequately substantiated through (a) reliance on already available toxicological test
data on individual ingredients and on product formulations that are similar in composition to
the particular cosmetic, and (b) performance of any additional toxicological and other tests
that are appropriate in light of such existing data and information.
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More information on FDA  Authority over Cosmetics is provided at:
http://wcms.fda.gov/IFDAgov/Cosmetics/GuidanceComplianceRequlatorylnformation/ucmOQ7
4162.htm. Link to Product Testing:
http://wcms.fda.gov/IFDAgov/Cosmetics/ProductandingredientSafety/ProductTesting/default.
htm.

415 BRAZIL

The Brazilian cosmetics regulation states that cosmetics must be safe for consumers in
normal or foreseeable conditions of use. To guarantee the quality of these products, the
Brazilian Health Surveillance Agency (Anvisa) works at registration, notification, market
inspection and post marketing surveillance. The Agency also creates norms and rules
applicable to production processes, techniques, methods and use of those products by
consumers.

Cosmetics products must comply with a set of lists that establishes which ingredients may or
may not be used, or even some that may be used if they meet some specific restrictions and
conditions (available at http://s.anvisa.gov.br/wps/s/r/lJp). These requirements undertake a
systematic review of ingredients and a battery of data of international benchmarks, such
as European Union Directive, United States of America laws, and technical criteria
recognized by the scientific community of Mercosur States Parties (Resolution GMC N°
51/08 e Resolution GMC N.°133/96)

The Safety Evaluation Guidelines published by Anvisa (2nd edition published in 2013)
recommends a wide variety of tests in the cosmetic ingredients and also in the final product.
All the safety evaluation tests must be performed before the cosmetic is placed into the
market. In addition, Anvisa's Affairs Law for cosmetics place responsibility on the
manufacturer and/or importers of cosmetic products to ensure that their products are safe
for the consumer when used as intended (RDC 04/2014).

In Brazil there are no guidelines for validation of in silico models and the respective
acceptance criteria for regulatory agencies in the scientific and regulatory dimension.
Nevertheless, we believe that knowledge about such premise can design regulatory actions
and decision making in the context of in silico reports, in addition to promote the
development of its predictive ability.

Relevant data required include:

Acute toxicity

Skin corrosivity and skin irritation

Skin sensitisation

Dermal/ percutaneous absorption
Repeated dose toxicity
Mutagenicity/genotoxicity

Subacute and subchronic toxicity

Eye irritation

Mucous membrane irritation
Photo-induced toxicity (phototoxicity , genotoxicity, photosensitization)
Carcinogenicity

Reproductive toxicity

Toxicokinetic and toxicodynamic studies


http://wcms.fda.gov/FDAgov/Cosmetics/GuidanceComplianceRegulatoryInformation/ucm074162.htm
http://wcms.fda.gov/FDAgov/Cosmetics/GuidanceComplianceRegulatoryInformation/ucm074162.htm
http://wcms.fda.gov/FDAgov/Cosmetics/ProductandIngredientSafety/ProductTesting/default.htm
http://wcms.fda.gov/FDAgov/Cosmetics/ProductandIngredientSafety/ProductTesting/default.htm
http://s.anvisa.gov.br/wps/s/r/lJp
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The above overview of the regulation of cosmetic related ingredients/products in the different
ICCR jurisdictions shows that where there are specified requirements of safety data, they relate
to physiochemical data and toxicological endpoints that range from a few simple acute
endpoints (e.g. irritation/sensitisation of eye or skin) to more complex chronic endpoints (e.g.
carcinogenicity, mutagenicity, developmental toxicity). This information is mapped in section 4.2
and Annex-| to identify whether or not an in silico model or expert system is available that can
be used to draw estimates on toxicity. It is, however, worth highlighting that it was outside the
scope of this WG to develop new, validate, or provide recommendation for the use of a specific
in silico method, model or system. The description of few selected (Q)SAR models and
approaches provided in Annex-l is meant to be a general overview and as such must not be
seen as an endorsement of quality or a recommendation for use. It is also recognised that there
are other in silico models and tools not covered by this report but may be relevant to use in in
silico assessment of cosmetic ingredients.

4.2 THE CURRENT USE OF IN SILICO METHODS
4.2.1 THE CURRENT USE OF IN SILICO METHODS - Europe

4.2.1.1 JRC QSAR Model database

The JRC QSAR Model Database (http://gsardb.jrc.ec.europa.eu/gmrf/) is a freely accessible
web application that enables users to submit, publish, and search QMRF° reports. Developers
and users of QSAR models can submit to the dedicated mailbox information on QSARs by
using the QMRF. A downloadable QMRF editor
(http://sourceforge.net/projects/gmrf/files/OMRF%20Editor/2.0.0/) is used for this purpose. The
JRC then performs a quality control (i.e. adequacy and completeness of the documentation) of
the QMRF submitted. Properly documented QMRFs are included in the JRC QSAR Model
Database. Inclusion of the model does not imply acceptance or endorsement by the JRC or the
European Commission, and responsibility for use of the models lies with the end-users.

4.2.1.2 Status of QMRFs in the JRC QSAR Model Database

At the time of writing (October 2013), the JRC QSAR Model Database contains 70 QMRFs
(Figure 1). A number of additional QMRFs will also be uploaded in a new version of the
database that will be available soon from the same webpage.

¥ (Q)SAR Model Reporting Format (QMRF) is a QSAR model documentation format in line with the
OECD principles.


http://qsardb.jrc.ec.europa.eu/qmrf/
http://sourceforge.net/projects/qmrf/files/QMRF%20Editor/2.0.0/
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Figure 1. Status of QMRFs in the JRC QSAR Model Database
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4.2.2 THE CURRENT USE OF IN SILICO METHODS - JAPAN
The following two approaches have been developed in Japan with support from the Japanese
government:

e Hazard Evaluation Support System Integrated Platform (HESS) for assessment of
repeated-dose toxicity

e Combination Approach for assessment of mutagenicity

Both applications are still at research stage, but the ‘Combination Approach’ will be used for
prioritizing the existing chemicals within the occupational health area.

4.2.2.1 The Hazard Evaluation Support System Integrated Platform — HESS:

The project on ‘Development of hazard assessment techniques using structure-activity
relationship methods (2007-2011)’, sponsored by New Energy and Industrial Technology
Development Organization (NEDO) in Japan, led to the development of ‘Hazard Evaluation
Support System Integrated Platform (HESS)' to provide decision support information to Experts
for evaluation of the repeated dose toxicity of chemicals by the category approach. The HESS
system has two main databases - the Toxicity Knowledge Information Database which contains
repeated dose toxicity test results (>500 reports) and toxicity mechanism information, and
Metabolism Knowledge Information Database which contains metabolic maps and kinetic
information. HESS also includes support tools for establishing the chemical category for toxicity
evaluation as the Category Approach Support Function. HESS is also designed to be
compatible with the OECD (Q)SAR Application Toolbox.

The system originally focused on supporting the evaluation of industrial chemical under the
‘Chemical Substance Control Law’ in Japan. As the system can import additional toxicity test
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results of other type of chemicals, the HESS would be applicable to the evaluation of cosmetic
ingredients.

4.2.2.2 The Combination Approach:

Different (Q)SAR software systems may generate different evaluation for the same chemical,
mainly due to different embedded evaluation rules and algorithms - such as rule-based
systems, discriminant-based systems, etc. It was therefore considered that in silico evaluation
could be optimized by combining the evaluations from multiple systems. A project supported by
the Health and Labour Sciences Research Grants Sensitivity, a ‘Combination Approach’ was
developed in Japan for prediction of chemical mutagenicity. The system uses DEREK,
MultiCASE, and ADMEWorks, to assesses chemical mutagenicity with increased overall
predictively of the three in silico systems for a final decision on mutagenicity. This approach has
been considered useful in prioritizing the chemicals for testing on the basis of potential
mutagenicity among the large numbers of chemical that have no experimental data on
mutagenicity.

4.2.3 THE CURRENT USE OF IN SILICO METHODS - UNITED STATES

FDA/CFSAN is currently using several commercial software programs to estimate the potential
toxicities of organic chemicals, and to construct new QSAR models for toxicological endpoints
not covered by the commercial models. These software programs and the commercial QSAR
models have been available to FDA/CFSAN under Research Collaboration Agreements (RCAS)
with the software vendors. Among these the following seven QSAR and/or rule-based in silico
programs are routinely used at the FDA:

— CASE-Ultra (Multicase Inc.)

— Leadscope Model Applier (Leadscope, Inc.)

— ADMET-Predictor (Simulations-Plus, Inc.)

— Percepta (Advanced Chemistry Development, ACD, Inc.)
— Symmetry (Prous Institute for Biomedical Research)

— SciQSAR (SciMatics, Inc.)

— Derek Nexus (Lhasa Ltd.)

A brief description of the methods is provided in Annex |I.

4.2.4 THE CURRENT USE OF IN SILICO METHODS - CANADA

Under the Chemicals Management Plan Substance Grouping Initiative, Health Canada and
Environment Canada use the read-across approach to predict endpoint or property information
for various substances. Additionally, modelled data may be generated through the use of
guantitative structure-activity relationships (QSAR). Such read-across and QSAR data are used
both for ecological and human health assessments.

However, in cases specific to cosmetic products, in silico approaches have thus far not been
used. Health Canada usually requests the highest trade level (e.g. manufacturer or importer) to
provide data specifically for the product formulation, and that studies based on key ingredients
in the product formulation, or using non-human subjects are not to be considered sufficient
evidence of safety. A project in currently underway to use the Threshold of Toxicological
Concern (TTC) approach with repeated-dose dermal toxicity data (see Appendix for details).



In silico-QSAR WG/Final report

425 THE CURRENT USE OF IN SILICO METHODS - BRAZIL

As stated in the Brazilian regulations, the safety evaluation of cosmetic products is responsibility
of the manufacturer’s. That means that Anvisa does not execute any tests by itself, but it is
responsible for analyzing all the results provided by a company and to evaluate if they are valid.

There is no specific regulation regarding the use of in silico methods for cosmetic products, and
this approach has not been fully adopted by most of the companies in Brazil. Recently, the
government has implemented some initiatives focused at the development of in silico tools (see
Annex 1), which may alter the way toxicological studies are conducted in Brazilian jurisdiction.
The expectation is that these efforts will not only bring scientific benefits, but may also bring
advances in the regulatory aspects.

4.2.6 THE CURRENT USE OF IN SILICO METHODS — THE COSMETICS INDUSTRY

A preliminary list of in silico methods most commonly used by cosmetics industry is provided
below. These methods are primarily used by the industry for internal decision-making and
screening purposes. Where in silico assessments are used for regulatory purposes, they form
part of a larger WoE package. The preference is to use open source applications where the
assumptions and algorithms are transparent and verifiable. Commercial packages are also used
but generally only after extensive verification with historical information.

Method Endpoint
Skin Skin Eye Acute Repeat Mutagenicity Carc. | Dev/ ADME
Sens. Irritation Irritation Oral Dose Genotoxicity Repro

Public

OECD v v v v v v v v

Toolbox

CAESAR v v v

(EV)

Toxtree v v v v

(JRC)

TEST v v v

(US EPA)

Commercial

DEREK v v

METEOR v

Topkat v v v v v v v v

Multicase

Academic &

Misc

Kasting v

Model

TTC v v
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* Does not include methods such as ACTOR (US EPA) used to gather relevant information from the literature or
databases. Also does not include applications such as AIM (US EPA) used to help identify common chemical
domains or analogs (AIM).

5.0 Combined use of in silico approaches

The availability of humerous models poses a question which model to use for a given query
compound given that often the predicted values between models vary significantly. This is
because different models use different statistical methodologies and molecular descriptors, and
may have different predictive power towards the same toxicological endpoint. To circumvent
arbitrary selection of model, one can combine predictions from several (Q)SAR models and or
read-across approaches. Consensus, (or ensemble), modelling as it is sometimes called, takes
multiple predictions (from different models) and yields a single prediction value. The theory
behind such an approach is that the weaknesses (poor predictions) observed in one model are
generally compensated for in another, resulting in a more robust and predictive consensus
model. Therefore, combining multiple models is only beneficial when these models are
sufficiently different from one another and adequately cover the chemical/biological space.
Although reasonable predictive performance is still a prerequisite, models used in this manner
should ideally complement each other, i.e. each showing excellent predictivity in unique areas of
its applicability domain. Methods include bagging (Breiman, 1996) and boosting (Freund, 1996).
In bagging, each model receives equal weighting, whereas in boosting, weighting are used to
give more influence to the best performing models. One can also use hierarchical Bayesian
models (Harol et al 2009). Numerous other studies have shown model combinations to be more
successful than the use of a single model (Abshear et al., 2006; Khedkar et al., 2014). In
addition to increased performance the combination of multiple predictions in this manner, forms
a weight-of-evidence which can greatly improve the confidence in a correct prediction.

Examples of the current use of combined (Q)SAR systems in ICCR jurisdictions include the use
of The Combination Approach in Japan (section 4.2.2). A case study in this regard relates to the
combined use of (Q)SAR models by Shiseido (Japan), who have developed a systemic way for
in-house assessment of repeated-dose toxicity. This system is designed on the assumption that
chemicals which have a chance of exposure to human are in scope of target. This scheme is
described as follows:

1. A target chemical is first checked for existing toxicological data using published data set and
in-house dataset.

2. The extent of exposure is considered in view of the product type (e.g., leave-on or rinse-off)
and percutaneous absorption of the chemical.

3. NOEL is calculated by using the in silico model. Shiseido has adopted an artificial neural
network (ANN) analysis for calculating NOEL from chemical structure. Over 400 data were
used for constructing the in silico model. Learning was implemented using QwikNet software
ver. 2.23 (Craig Jensen, Sammamish, WA).

4. At the same time, analogous chemicals are identified in the HESS dataset (section 4.2.2)
and others. This is based on structural similarity, toxicological alert pattern from DEREK
Nexus, intestinal absorption, etc. NOEL values of the analogous chemicals are obtained
from HESS.

5. NOEL of the target chemical is determined by referring not only to the calculated NOEL by
the ANN model, but also to the NOELSs of the analogous chemicals.

6. Finally, MoS of the chemicals is calculated using the estimated NOEL and percutaneous
absorption to determine overall safety.
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On the (draft'') Guideline ‘assessment and control of DNA reactive (mutagenic) impurities in
pharmaceuticals to limit potential carcinogenic risk’ under the ‘International Conference on
Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use’
(ICH), an analysis of computational toxicology assessment was introduced in order to predict
the mutagenicity of impurities in the new drug products, on which no experimental data was
available.

The guideline stated that two types of (Q)SAR prediction models should be applied. One model
should be expert rule-based, and the second should be statistical-based. The used (Q)SAR
models should conform to the validation principles published by the Organisation for Economic
Co-operation and Development (OECD 2007). The absence of structural alerts from the two
complementary (Q)SAR models is considered to be sufficient for confirming no concern of
mutagenicity of impurities. In order to provide additional supportive evidence on relevance of
any predictions and to elucidate underlying reasons in case of conflicting results, any results of
computer-based analysis should be reviewed.

Amongst the several published examples of the use of combined (Q)SAR systems is in the
Integrated Testing Strategies (ITSs) developed to provide evidence from different information
sources such as QSAR models, in vitro and in vivo test results in a WoE approach in the EU
FP6 project ORISIS (Rorije et al., 2013). This approach was applied to skin sensitisation
endpoint using Bayesian statistics to calculate the probability of the predictability to estimate the
reliability of a conclusion on the skin sensitisation potential of a chemical. Rorije et al. (2013)
concluded that the use of two or more positive predictions from QSAR models actually gave a
higher probability. The calculated Bayesian probability that a substance will test positive in the
LLNA test was 85.9%, when three models (DEREKfW, TIMES-SS and the SMARTS rules
implemented in the OECD Toolbox) agreed with each other — i.e. either all three gave a positive
result or a negative result (280 out of 522 compounds). For the remaining substances, the
QSARs vyielded conflicting predictions, preventing the WoE conclusion to reach the required
80% or 90% probability, therefore needing additional information to make the WoE sufficient for
the REACH regulatory framework.

6.0 Summary and Conclusions

It is evident from the above overview that in silico methods and tools for assessment of
chemical toxicity have gone through enormous progress over the past few decades. As a result,
extensive structure-activity databases, data-mining algorithms, (Q)SAR models, expert systems,
read-across methods, and other versatile in silico tools are now available in the form of
commercial and free-access software platforms. As such, they offer a rapid, cost-effective, and
ethical alternative for generating chemical toxicity estimates without the need to test on animals.
The in silico models and systems currently available for assessment of chemical toxicity cover a
wide range of structure-activity space and are equally relevant and valuable for generating
toxicity estimates for cosmetic ingredients.

There are a number of drivers for moving away from testing toxicity of cosmetic ingredients in
animals — such as the improved predictivity, cost, time, and ethical implications — and for
deriving data and estimates by alternative in vitro and in silico means. Availability of such
alternative methods is more crucial in Europe where animal testing of cosmetic

" The draft document is expected to be finalized at the next ICH meeting in the beginning of June,
and could be adopted by three authorities (EU, JP, US) as a final document. (The harmonized
guideline moves to immediately to the regulatory implementation step.) Therefore, the word of
(draft) may be removed from the document in July.
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ingredients/products, and marketing of new cosmetic ingredients/products tested on animals, is
now banned. However, despite the need and the drivers, the current use of in silico approaches
is largely limited to internal decision making both at the industry and at the regulatory levels in
most ICCR jurisdictions, and has still not been fully adopted as one of the mainstream methods
for safety assessment of cosmetic ingredients.

One likely reason is that only a handful of the currently available models and tools have been
developed in line with the stringent quality and validation standards to merit their consideration
for adoption as a routine alternative to in vivo testing for safety assessment. Also, different
models and systems sometime tend to yield conflicting results, which makes it difficult for a user
to choose a particular in silico system in preference to the others, and to rely on its predicted
estimates in a safety assessment. This is because each model and system is generally built on
a different dataset and algorithm(s), and therefore tends to decipher and interpret the chemical
structure and toxicological information in a different way. Each model/system also reflects a
different level of uncertainty and variability associated with the data used in developing it, and
the modelling process itself, and may also have a different applicability domain within which the
predicted estimates of toxicity are reliable. It practice, however, some of these limitations can be
addressed through appropriate selection and use of the in silico systems. For example, in silico
assessments may only be derived from those models and systems that meet the stringent
quality and validation standards, and have clearly defined applicability domains. Although this
may limit the number of workable in silico tools, it should provide more confidence in the
predicted estimates. It may also be possible to add more confidence to in silico assessments
through the use of a combination of appropriate (Q)SAR models, expert systems, and/or read-
across approaches, rather than relying on a single model/system. A ‘weight of evidence’
gathered this way should provide sufficient basis for a reliable in silico assessment of chemical
toxicity for safety evaluation.

In this regard, it also needs to be emphasised that the development and use of in silico methods
require a thorough consideration of the quality of the data and the algorithms behind a system,
the amount of testing/validation carried out, and the adequacy of the chemical structure and
biological activity space covered by the model’'s applicability domain. This inevitably requires
expert knowledge and a degree of skilled approach based on a good understanding of
toxicology and (bio)chemistry. Thus, despite the ease of use offered by certain advanced in
silico platforms, the assessment of toxicity by in silico approaches must not be reduced to a
‘black box’ routine.

Further work in this area is recommended in relation to development of a uniform and
standardised approach that allows the selection and use of appropriate in silico system(s), and
interpretation of the results from a cosmetics safety assessment perspective. In addition, an
appropriate framework also needs to be developed that allows integration of different in silico
approaches in a consistent scheme that allows sufficient weight of evidence to be gathered
against relevant toxicological endpoints for use in safety assessment of cosmetic ingredients.
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8.0 ACRONYMS

3Rs

Alternative methods

ECVAM
EFSA

In silico methods

In vitro test methods

LLNA
OECD
QSAR

Read-across

REACH
SAR
SCCS
WoE
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Refinement, Reduction, Replacement of the use of animals in
laboratory procedures

All those procedures which can completely replace the need for
animal experiments, which can reduce the number of animals
required, or which can reduce the amount of pain and stress to
which the animal is subjected in order to meet the essential needs
of humans and other animals [Rogiers and Beken, 2000]

European Centre for the Validation of Alternative Methods
European Food Safety Authority

Computational approaches that use (quantitative) structure-activity
relationship modelling, and read-across between substances on
the basis of structural or functional similarities.

Biological method that uses organs, tissue sections and tissue
cultures, isolated cells and their cultures, cell lines and subcellular
fractions, or non-biological method that uses chemical interaction
studies, receptor binding studies, etc [Rogiers and Beken 2000]

Local Lymph Node Assay
Organisation for Economic Co-operation and Development
Quantitative Structure-Activity Relationship

A method to derive biological activity (e.g. toxicity) values for a
target chemical structure from experimental values on structurally-
and/or functionally similar chemical analogues.

Registration, Evaluation, Authorisation and restriction of Chemicals
Structure-Activity Relationship

Scientific Committee on Consumer Safety

Weight of Evidence



In silico-QSAR WG/Final report

ANNEX-I: RELEVANT IN SILICO METHODS AND TOOLS

OECD QSAR TOOLBOX

Methodology: Categorisation, Read-Across, (Q)SAR

Area of Applicability: A wide range of chemicals

Brief Description: The OECD QSAR Toolbox is a stand-alone software system intended to
be used by governments, industry and other stakeholders to fill gaps in toxicity data needed
for assessing the hazards of organic chemicals for environmental and human health
endpoints. The Toolbox incorporates information and “tools” from various sources into a logical
workflow. The Toolbox has multiple functionalities allowing the user to perform a number of
operations (e.g., categorize large inventories of chemicals according to mechanisms of action,
using or building QSAR models, read-across from structurally related analogous compounds
that have already been tested).

The primary function of the Toolbox is to place discrete organic substances into chemical
categories for outcomes of regulatory interest and use data from tested category members to
aid in filling data gaps for untested category members. It is designed to use 2D structures and
chemical properties to group chemicals, including the query substance, into endpoint-specific,
meaningful categories, which include tested compounds that are all “similar” in a transparent
manner. Thus, a category is constructed on chemical and biological mechanistic information
but data gaps are filled by using in vivo test data within the category. The Toolbox contains: 1)
Databases with results from experimental studies; 2) Accumulated knowledge for structural
characteristics (alerts) that can indicate the presence of hazards and other properties, and 3)
Apparatus to estimate missing experimental values.

It is important to remember that the 3 main features of Toolbox are: 1) Identification of relevant
structural characteristics and potential mechanism or mode of action of a target chemical, 2)
Identification of other chemicals that have the same structural characteristics and/or
mechanism or mode of action, and 3) Use of existing experimental data to fill data gap(s).

The Toolbox workflow is a sequence of modules; 1) input, 2) profiling, 3) endpoints, 4)
category definition, 5) data gap filling, and 6) reporting. The aim of the module “Filling Data
Gap” is to give access to three different data gap filling tools; 1) Read-across, 2) Trend
analysis, and 3) QSAR models. Read-across and trend analysis both use the available results
in the category data matrix to fill a data gap. QSAR models gives access to a library of QSAR
models which have been integrated into the Toolbox. With the module “Report”, the user can
generate reports on any of the predictions performed with the Toolbox. The Toolbox contains a
number of predefined report templates as well as a template editor with which a user-defined
template can be formatted.

Version 3.2 of the Toolbox, released at the end phase 2 developments in November 2012,
includes, in addition to a number of general improvements to previous versions, the ability for
direct data exchange with IUCLID 5.5. The Toolbox provides a module for the applications of
adverse outcome pathways (AOPs) to chemical category formation. This pathway approach is
based on the concept that toxicity results from a chemical first reaching and then interacting
with an initial key target (e.g., membrane, receptor) in the organism; this is defined as the
primary molecular initiating event. Further from this primary interaction is a series of other key
events; all such key events can be profiled in an AOP workflow within the Toolbox and linked
to databases within the Toolbox which have data from test methods that quantify the AOP-
specific key events.

Reference: www.oecd.org/chemicalsafety/risk-assessment/theoecdgsartoolbox.htm
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CRAMER DECISION TREE

Methodology: Expert System (decision tree) based on structural alerts and expert knowledge

Area of Applicability: Food, drug, cosmetics, pesticides, biocides

Brief Description: The Cramer decision tree is probably the most commonly used approach
for classifying and ranking chemicals on the basis of their oral toxicity. It consists of 33
guestions. Each 'yes' or 'no' answer leads to a further question, or to the final classification into
one of the three classes:

Class I: Substances with simple chemical structures and for which efficient modes of
metabolism exist, suggesting a low order of oral toxicity.

Class II: Substances which possess structures that are less innocuous than class |
substances, but do not contain structural features suggestive of toxicity like those substances
in class Ill.

Class lll: Substances with chemical structures that permit no strong initial presumption of
safety or may even suggest significant toxicity or have reactive functional groups.

The logic of the sequential questions was based on the then available knowledge on toxicity
and on how chemical structures are metabolised in mammalian metabolic pathways. The
guestions relate mostly to chemical structure, but natural occurrence in the body and in food
are also taken into consideration. The decision tree is intended for use with all ingested,
structurally-defined organic substances.

Cramer Decision Tree was first described by Cramer et al (1978). It is how implemented in
Toxtree and OECD QSAR Toolbox. The approach has been evaluated by JRC (Lapenna &
Worth, 2011). It's use is recommended by EFSA in its opinion on TTC, with the
recommendation that Cramer class Il compounds should be treated as class lll (EFSA 2012).
It is also recommended by the European Commission’s non-food scientific committees in their
opinion on TTC, again with the caveat that Cramer class Il compounds should be treated as
class Ill (EC, 2012). It is widely used for the assessment and prioritisation of low level
contaminants that are not subject to regulatory reporting requirement (e.g. contaminants in
food and drinking water, metabolites and degradates of pesticide actives, etc).

Based on a survey of Toxtree/ Cramer users by the JRC (Lapenna et al., 2011),
recommendations were made to address the following limitations:

Many of the original Cramer rules are written in a confusing and interdependent way, which
leads to difficulties in rationalisation of the predictions. They should be rewritten in a clearer
way, possibly with modification and re-ordering. Two of the rules are not based on chemical
features, but simply make reference to look-up lists of chemicals (Q1, normal body
constituents; Q22, common food components). These two questions could either be omitted,
or the lists of chemicals extended with e.g. recently authorised food additives after peer-
reviewing. The assessment of whether specified substances can be “generally regarded as
safe” should be carried out at a different step in the overall TTC assessment scheme. Some
rules make ambiguous references to chemical features (e.g. steric hindrance) which need to
be clarified and revised.

References:
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BENIGNI-BOSSA RULE BASE

Methodology: Expert System based on structural alerts and QSAR for genotoxicity and
carcinogenicity

Area of Applicability: Food, Drug, Cosmetics, Industrial Chemicals

Brief Description: The Benigni-Bossa rule base makes generic predictions of both the
genotoxic and non-genotoxic carcinogenicity potential of chemicals, based on the rules
published in the EC report (Benigni et al., 2008: The Benigni/Bossa rulebase for mutagenicity
and carcinogenicity — a module of Toxtree). The present list of structural alerts (over 30) refers
mainly to genotoxic carcinogenicity, and also includes a number of structural alerts for
potential non-genotoxic carcinogens. In addition to the alerts, the rule base includes optional
QSAR models for:

i) mutagenic activity in Salmonella typhimurium TA100 strain (Ames test) of aromatic
amines (QSARG6), and alpha,beta-unsaturated aldehydes (QSAR13), and
i) carcinogenicity in rodents of aromatic amines (QSARS).

The underlying mechanism(s) for triggering of an alert for genotoxic carcinogenicity are not
clearly defined, as these may include different possible mechanisms of genotoxicity (e.g.
Ames mutagenicity, chromosomal aberration, chromosomal instability, etc.) which may be
linked to carcinogenicity.

The Benigni-Bossa rule base was first described in JRC report (Benigni et al., 2008). QMRF
for the rule base are available in the JRC QSAR database
(http://gsardb.jrc.ec.europa.eu/gmrf/). It is implemented in Toxtree and OECD QSAR Toolbox,
and used in the Kroes et al TTC decision tree which is implemented in Toxtree. The rule base
is evaluated by JRC in a study for EFSA (Worth et al, 2010a, 2010b). It has also been
evaluated in scientific literature by Hillebrecht et al. (2011); and Bakhtyari et al. (2013).
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CASE-ULTRA (VERSION 1.4.7.0)

Methodology: Molecular fragment-based, QSAR expert system that generates predictive
models automatically by using machine learning techniques from training data sets of non-
congeneric compounds associated with biological/toxicological data

Area of Applicability: food, drug, cosmetics, pesticides, biocides

Brief Description: CASE-Ultra (version 1.4.7.0) is the latest generation Windows based
program from MultiCASE Inc. (www.multicase.com), which is mainly influenced by MCASE
(Multiple Computer Automated Structure Evaluation) methodology (previously known as
CASE, MC4PC and CaseTox). The program can be used to estimate the toxicities of organic
chemicals, and to construct new QSAR models (modules). It is a molecular fragment-based,
QSAR expert system that generates predictive models automatically by using machine
learning techniques from training data sets of non-congeneric compounds associated with
biological/toxicological data. - CASE-Ultra first examines SMILES codes of active chemicals in
the training set and breaks them into all possible linear or branched (non-hydrogen) atom
molecular fragments -, then identifies a set of structural alerts that are statistically related to
the activity. These fragments are labelled as positive alerts or biophores. The positive alerts
are the main building blocks of the QSAR model and are responsible for identifying active
chemicals during prediction. The significance of each fragment towards activity is determined
using a combination of two-objective criteria comprised of the Shannon’s entropy as a fitness
measure and the number of the active training set molecules containing this fragment. A set of
top fragments (based on the aforesaid two-objective criteria) is selected in order to cover all
the active chemicals of the training set. In addition, deactivating alerts are also developed and
selected using a similar process but by scanning inactive chemicals and finding fragments that
occur mainly in inactive chemicals. CASE-Ultra then calculates various descriptors for the
training set chemicals that include logP, water solubility, molar refractivity, surface area
descriptors, vapour pressure, Gasteiger charges, E-State descriptors, fragment descriptors
and others. Once the final sets of the positive and deactivating alerts are identified as well as
QSAR descriptors are calculated, CASE-Ultra attempts to build separate local QSARs for each
positive alert using a stepwise regression method in order to explain the variation in activity
within the training set chemicals covered by that alert. It has a fully automated procedure for
calculating the predictive performance of the QSAR models that computes LMO and LOO
cross-validation statistics (Matthews and Contrera, 1998; Chakravarti et al., 2012; Saiakhov et
al., 2013).

During CASE-Ultra prediction from a particular model, a test chemical is scanned through the
list of the model’s positive and deactivating alerts and if no positive alerts could be identified,
the test chemical is considered to have no evidence of activity and is presumed to be inactive.
The presence of a deactivating alert along with a positive alert also predicts the test chemical
as inactive. In general, a test chemical is predicted active if it contains either one or more
positive alerts. However, this active prediction can be changed if the local QSAR of the
positive alert(s) modifies the prediction. On the contrary, if a test chemical contains a positive
alert that is present in just one or two active training set chemicals (low statistical confidence
and also no local QSAR); the prediction is considered as inconclusive. The program also
identifies unusual features/fragments in test chemicals that do not match the training data
(unknown structural fragments) and thus explains the domain of applicability (DoA) for overall
model. A test chemical is considered as an out of the DoA if it has three or more unknown
structural fragments. The prediction coverage of the test set is defined as the percentage of
the test chemicals as predicted either an active or inactive (Chakravarti et al. 2012). CASE
Ultra is used to predict a single test chemical or a very large test set chemicals (in batch
mode) and the results can be exported in the form of a report with varying levels of details.
This program provides the following information/options to the users: (i) details about the
model, (ii) alerts — statistical significance, average activity, molecules containing particular alert
and active molecules containing particular alert, (ii) QSAR equation(s), (iv) validation
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statistics, (v) training set chemicals — except proprietary chemicals, (vi) option to add more
chemicals to the training set, reprocess, and revalidate the model, and so on. The current
version of the CASE-Ultra has more than 450 modules that have been undergone internal
validation. The models cover various areas of toxicology and pharmacology that includes the
followings: Acute toxicity, ADME, Adverse effects in humans, allergies, antibacterial, anti-HIV,
carcinogenicity, cytotoxicity, developmental toxicity, eco-toxicity, enzyme inhibition, genetic
toxicity, teratogenicity, etc.

CASE-Ultra has been evaluated in scientific literature (Saiakhov, et al. 2013; Chakravarti, et al.
2012; Matthews, et al. 2008; Matthews and Contrera, 1998).
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LEADSCOPE MODEL APPLIER (LSMA; VERSION 1.7.4-1)

Methodology: Molecular fragment based QSAR system

Area of Applicability: Food, drug, cosmetics, pesticides, biocides

Brief Description: Leadscope Model Applier (LSMA; version 1.7.4-1) is a latest version
Windows based and commercially available program of Leadscope, Inc.
(www.leadscope.com). It is a molecular fragment based QSAR system that uses chemo-
informatics approach and 2D features to evaluate chemical compounds and their likelihood to
associate with a modeled toxicity endpoint. It must be noted that this program is used only for
the toxicity prediction from the pre-developed QSAR models already in the system and cannot
be used to construct a QSAR model. However, QSAR models can be developed by using
other program called the Leadscope Enterprise (LSE; version 3.1.1). LSE classifies chemical
structures using a library of more than 27,000 predefined sub-structures (finger prints) that
represent functional groups, heterocycles and pharmacophores organized in a chemical
hierarchy that serves as a knowledge-base to facilitate compound grouping. LSE has a QSAR
model builder that uses partial logistic regression (PLR) algorithm, 2D structural features and
eight calculated molecular descriptors in order to develop classification models. It has a fully
automated procedure for calculating the predictive performance of QSAR models in random
LMO and LOO cross-validation experiments. The DoA of a QSAR model is defined by
analyzing the similarity of structural features between the test chemical and the training data
set chemicals (Cross et al., 2003; Yang et al., 2004; Matthews et al., 2008).

The current version of the LSMA program provides more than 90 modules in various areas of
toxicology that covered under following toxicity suites: developmental toxicity, genetic toxicity,
human adverse cardiological effects, human adverse hepatobiliary effects, human adverse
urinary effects, neurotoxicity, reproductive toxicity, rodent carcinogenicity, etc. During LSMA
prediction from a particular model, program compares the structural features of the training
data set with the features of test chemicals, and then identifies and reports the prediction for
test chemicals including the number of test chemicals that cannot be predicted and are not
within the DoA of the model. The prediction coverage of the test set is defined as the
percentage of the test chemicals as predicted either an active or inactive. The LSMA program
is used to predict a single test chemical or a very large test set chemicals (in batch mode) and
the results can be exported in the form of a report with varying levels of details including
prediction explanation. This program provides the following information of a particular model
and about the test chemical prediction results to the users: (i) model descriptions including
validation results, (ii) highlights the number of chemicals with a positive predicted probability of
>= 0.5, (iii) 0/1 distribution of the training set i.e. percentage of training set chemicals having
the feature that are zero and those that are one, (iv) probability distribution of model results for
those training set chemicals having particular feature, (v) prediction calls for test chemical(s)
including positive, negative, not-in-domain or missing descriptors, (vi) explanation of the
prediction result(s), and so on.

The programme has been evaluated in scientific literature (Matthews, et al. 2008; Frid and
Matthews, 2010).
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ADMET PREDICTOR™ 6 (VERSION 6.5.0013)

Methodology: In silico predictor for estimation of absorption, distribution, metabolism,
elimination, and toxicity (ADMET) properties of molecules based on molecular structures and
structural descriptors.

Area of Applicability: Food, drug, cosmetics, pesticides, biocides

Brief Description: ADMET Predictor™ 6 (version 6.5.0013) is the latest version of Windows
program available commercially from Simulations Plus, Inc. (www.simulations-plus.com).
ADMET Predictor is designed to estimate absorption, distribution, metabolism, elimination, and
toxicity (ADMET) properties of molecules based on their molecular structures, employing
individual models for specific ADMET endpoints. It is a molecular descriptor-based QSAR
system that calculates 2D (and 3D, if 3D structures are input) molecular and atomic-level
descriptors of test molecules and provides prediction of various ADMET endpoints that include
(i) Physico-Chemical and Biopharmaceutical Module: ionization constants (pKa), human
effective permeability in jejunum (Peff), MDCK apparent permeability (Papp), corneal
permeability, human skin permeability, solubility, logP, logD, molal volume, blood-brain barrier
permeation, human plasma protein binding, human volume of distribution, blood-to-plasma
concentration ratio, inhibition of HIV integrase, etc., (i) Metabolism Module: likely sites of
metabolic attack by five CYP P450 enzymes, classification of a molecule whether it will be a
substrate of one of the five CYP P450 enzymes, Michaelis-Menten kinetic (K, and Via)
constants for hydroxylation reaction catalyzed by five CYP P450 enzymes, intrinsic clearance
(CLin) resulting from metabolic activity of five CYP P450 enzymes, classification of a molecule
whether it will be glucuronidated by one of the nine isoforms of the Uridine 5'-Diphosphate-
Glucuronosyl-transferase (UGT), etc., (iii) Toxicity Module: estrogen and androgen receptor
toxicities (qualitative and quantitative), maximum recommended therapeutic dose (MRTD),
acute toxicity, carcinogenicity, mutagenic chromosomal aberrations, phospholipidosis,
reproductive/developmental toxicity, skin sensitization, hERG-encoded K+ channel affinity,
human liver adverse effects of drugs, etc., (iv) Simulation Module: fraction absorbed in human
(by simulation at 1 mg, 10 mg, 100 mg, and 1000 mg dose levels) and optimal dose in human
(in mg) matching desired efficacious concentration in blood plasma, (v) Customizable ADMET
Risk Filters: risk of low absorption from an oral dose, risk of mutagenicity, risk of overall
toxicity, risk of metabolic liability, and global ADMET risk summarizing all available ADMET
endpoints prediction in one score (ADMET Risk). The ADMET Predictor automatically
determines whether a test compound is within the Domain of Applicability (DoA), or outside the
DoA, of the model by incorporating minimum and maximum values of each of their descriptor
in the training set plus a 10% tolerance. If a test molecule is outside the DoA of the molecular
descriptors then the ADMET Predictor evaluates it as outside the DoA and color codes
(magenta color) in the prediction. This result is also exported separately in terms of binary
values (1s and Os, where 1 represents outside the DoA and 0 represents within the DoA).

ADMET-Predictor also has a sub-program called the ADMET Modeler™, which provides
model-building functionality in order to create both classification and regression models using
a collection of methodologies such as artificial neural network ensemble (ANNE) and support
vector machine (SVM) are used for both the classification and regression analysis, while
kernel partial least square (KPLS) and multiple linear regression (MLR) methods are used only
for the regression analysis (Agoram et al., 2001; Bolger et al., 2009; Fraczkiewicz et al., 2009;
Choi et al., 2013).

The programme has been evaluated in scientific literature by Choi et al. (2013).
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PERCEPTA

Methodology: Molecular-descriptor and molecular-fragment based QSAR system that
generates predictive models automatically by using Pharma Algorithms from training data sets
of non-congeneric compounds associated with physical/ biological/toxicological data.

Area of Applicability: Food, drug, cosmetics, pesticides, biocides

Brief Description: Percepta is a Windows based computational program that is available
commercially by Advanced Chemistry Development Labs, Inc. (ACD/Lab; www.acdlabs.com).
It is a molecular-descriptor and molecular-fragment based QSAR system that is designed to
estimate certain physicochemical and ADME properties, and toxicity endpoints using a
collection of (Q)SAR modules. These modules have been built using the Algorithm Builder™
software developed by Pharma Algorithms (now merged with ACD Labs). Prediction modules
of Percepta are actually a bundle of four suites such as ACD/Impurities Package for Toxicity,
ACD/PhysChem Suite, ACD/ADME Suite, and ACD/Tox Suite. The program calculates
fragment, molecular and atomic descriptors of test molecules using a variety of input
parameters (e.g. name, 2D structure, or SMILES) and provides prediction results that include:

e PhysChem Modules: Absolv (hydrogen bonding acidity, hydrogen bonding basicity,
polarity/polarizability, partitioning coefficient between gas phase and hexadecane,
McGowan volume and excessive molar fraction), aqueous solubility, boiling point, logP,
logD, pKa, sigma, and other PhysChem descriptors (e.g. H-bond donors and acceptors,
freely rotatable bonds, density, molar refractivity, molar volume, parachor, rule-of-5,
surface tension, etc.);

e ADME Modules: Blood-brain barrier permeation, cytochrome P450 inhibitors, cytochrome
P450 substrates, distribution, maximum recommended daily dose, oral bioavailability,
passive absorption, P-gp specificity, regioselectivity of metabolism; and

e Toxicity Modules: Acute toxicity, aquatic toxicity, endocrine system disruption,
genotoxicity, health effects, hERG inhibition, eye and skin irritation.

Users can evaluate predictions either in a single structure or spreadsheet view. Spreadsheet
view offers the additional capability to view predictions from all available modules in one
screen, and a number of graphing, sorting, and filtering tools to rank compounds and aid
evaluation. In this program, each module provides both a probability of the test chemical being
active or inactive, as well as a reliability index (RI) for the prediction, which evaluates
respective confidence in the prediction. The Rl includes an assessment of the DoA as well as
the relative confidence in the probability of the prediction (Lanevskij et al., 2009; Lanevskij et
al., 2011; Reynolds et al., 2009).

The programme has been evaluated in scientific literature (Lanevskij, et al. 2009; Reynolds, et
al. 2009; Lanevskij, et al. 2011).
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SYMMETRY®

Methodology: Descriptors-based, QSAR system that generates predictive models
automatically from training data sets of non-congeneric compounds associated with
biological/toxicological data by using three different algorithms, such as, logistic regression,
similarity regression and combined regression.

Area of Applicability: Food, drug, cosmetics, pesticides, biocides

Description: Symmetry® is the next-generation Windows-based QSAR software that replaces
BioEpisteme® and is available from the Prous Institute for Biomedical Research, Barcelona,
Spain (www.prousresearch.com).This program employs a bi-functional system that includes a
module for test set predictions and a module for QSAR model development. For descriptor
calculations, the  program utilizes  the FDA Mold2  descriptor  package
(http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/ucm144528.htm) that
calculates a diverse set of 777 two-dimensional molecular descriptors from chemical structure
information. Symmetry employs three different algorithms for the development of classification
models, such as, logistic regression, similarity regression and combined regression. The
combined algorithm works comparable well, which involves both the logistic regression and
molecular descriptor similarity. The program utilizes three different methods for the selection of
descriptors, such as, correlation-based feature selection (CFS), genetic algorithm for CFS, and
wrapper descriptor selection. Duplicates are removed automatically from the training set, while
outliers are eliminated at >3 inter-percentile range from lower and upper percentiles.
Symmetry employs a synthetic minority over-sampling technique (SMOTE) that uses the
molecular structures trained with the minority class to generate synthetic structures labeled
with that class until the number of positives and negatives is equal. SMOTE method is useful
when there are imbalances in the classes in the training data set (e.g., more negatives than
positives) and therefore QSAR model development may either be very difficult or not possible.
The program automatically performs 10-fold cross-validation and provides validation measures
of the performance from the cross-validation, once the model is completed (Choi et al., 2013).

Internal validation report provides details about the QSAR model(s), molecular descriptors
used in constructing the model(s), ratio of positive and negative compounds with their
individual percentage, graphical representation of the predicted molecules (true positive, true
negative, false positive and false negative), model statistics (specificity, sensitivity,
concordance, Matthews correlation coefficient, and so on), and comparison between
prediction result and actual value for each of the training set compound. Once a model is built
and found to have acceptable internal validation performance, the external validation
experiment can be performed using a new or different data set (not available in the training
set) to see the predictive ability of the model. Symmetry has two types of toxicological suites:
(a) preclinical safety suite (62 models) includes rodent carcinogenicity, reproductive toxicity,
fetal developmental toxicity, fetal survival toxicity, behavioral toxicity, genetic toxicity and (b)
the human adverse effects/clinical suite (24 models) includes adverse cardiological effects,
hepatobiliary effects and urinary system effects in humans. The other important models are
the molecular mechanism of action (MOA) models that predict the interaction of molecular
entities with molecular targets in the areas of type 2 diabetes, cancer, nervous system
diseases and behaviour and mental disorders. Symmetry also has pharmacokinetics and
disease-based models.

The programme has been evaluated in scientific literature by Choi et al. (2013).
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SCIQSAR

Methodology: Descriptors-based, QSAR system that generates predictive models
automatically from training data sets of non-congeneric compounds associated with
biological/toxicological data by using six different algorithms.

Area of Applicability: Food, drug, cosmetics, pesticides, biocides

Description: SciQSAR (formerly MDL-QSAR) is Windows-based QSAR software that is
currently available by SciMatics Inc. (www.scimatics.com). The program provides over 240
physicochemical, electro-topological E-state, connectivity and other descriptors; a selection of
6 different algorithms for structure similarity searching; a genetic algorithm for descriptor
selection; and a variety of statistical tools including the capability to perform parametric and
non-parametric discriminant analysis. The best SCIQSAR model can be obtained by searching
for the best subset of descriptors and optimization of the discriminant analysis parameters.
The selection of the type and optimal parameters for a model with highest accuracy can be
achieved by trying various combinations of model building parameters. The performance of a
model is evaluated using an automated validation process within the program that calculates
the prediction error rate in the training set (i.e., probabilities of misclassification) (Matthews et
al., 2008; Contrera, 2013).

The programme has been evaluated in scientific literature (Mathews, et al. 2008; Contrera,
2013).
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DEREK NEXUS

Methodology: SAR; Expert System

Area of Applicability: Food/ Drug/ Cosmetics/ Industrial Chemicals

Brief Description: Derek Nexus is used to assess the toxicity of a wide range of chemical classes,
including food, drug, cosmetic, and industrial chemicals, and the system provides predictions for
over 50 toxicological endpoints, including mutagenicity, chromosome damage, carcinogenicity, skin
sensitisation and reproductive toxicity.

The broad applicability of Derek Nexus is supported by the wide range of organisations that
currently use the software, including agrochemical, cosmetic, food and nutrition, petrochemical,
pharmaceutical and tobacco companies.

The performance of Derek has been evaluated, and in many cases these evaluations have been
published in peer-reviewed journals. Examples include heat generated food contaminants [Cotterill
et al], flavour chemicals [Ono et al], chemicals released from plastic food packaging [Rothenbacher
and Schwack], pharmaceutical impurities [Sutter et al, Dobo et al], pharmaceuticals [Snhyder,
Mathews et al 2009], cosmetic ingredients [Goebel et al, Suarez-Rodriquez], pesticides [Crettaz
and Benigni] and industrial chemicals [Hayashi et al, Rybacka et al].

Derek Nexus is a rule-based expert system for the prediction of toxicity. Its knowledge base is
composed of alerts, examples and reasoning rules which may each contribute to the predictions
made by the system. Each alert in Derek describes a chemical substructure believed to be
responsible for inducing a specific toxicological outcome (often referred to as a toxicophore). Alerts
are derived by experts, using toxicological data and information regarding the biological mechanism
of action. Where relevant, metabolism data may be incorporated into an alert, enabling the
prediction of compounds which are not directly toxicity but are metabolised to an active species.
The derivation of each alert is described in the alert comments along with supporting references
and example compounds where possible. By reporting this information to the user, Derek provides
highly transparent predictions.

There are currently over 800 alerts in Derek Nexus covering over 50 toxicological endpoints
(including mutagenicity, chromosome damage, carcinogenicity, reproductive toxicity and skin
sensitisation). The system provides species-specific predictions for humans, other mammals and
bacteria.

When a query compound is submitted to Derek, its structure is analysed for any toxicophores which
match alerts within the knowledge base. In addition, certain physicochemical properties (e.g. logKp)
are calculated for the query structure and these values are checked against rules within the
knowledgebase. The reasoning engine within Derek then assesses the matched alerts and
reasoning rules to generate the likelihood of toxicity for a specified species [Judson et al 2003].
Likelihood in Derek is expressed using one of nine confidence levels [Judson et al 2013]. These
are: certain, probable, plausible, equivocal, doubted, improbable, impossible, open and
contradicted. If a query compound matches no alerts or reasoning rules in the knowledge base, the
program displays a message of “nothing to report”.

The use of Derek Nexus for the assessment of a range of toxicological endpoints is described in
numerous publications, including those cited in this report. In addition, QSAR Model Reporting
Format (QMRF) reports are available describing Derek’s methodology in specific relation to the
endpoints of mutagenicity, chromosome damage, carcinogenicity and skin sensitisation. These
reports are available in the Joint Research Centre (JRC) QSAR model database [JRC].

Limitations: As with other statistical models and expert systems, Derek Nexus predictions are
restricted to chemicals that are structurally similar to those used to develop the model. In practice, if
a query chemical activates an alert in Derek it can be considered to be within the ‘applicability
domain’ of the model. With this in mind, in order to ensure that Derek is applicable to a wide range
of chemicals, an effort is made to use all available public data when developing alerts. In addition,
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whenever possible, proprietary data provided by Derek users are also used to develop alerts: this
enables the system to describe the activity of chemical classes for which public data are not
available.

While Derek Nexus contains alerts for over 50 toxicological endpoints, these endpoints differ with
respect to their level of development. The well-developed endpoints in Derek are mutagenicity,
chromosome damage, carcinogenicity and skin sensitisation, each of which has more than 50
associated alerts in the knowledge base.

If a compound does not activate an alert or reasoning rule in Derek, a result of ‘nothing to report’ is
presented to the user. This can be interpreted as a negative prediction or that the query compound
is outside the domain of the model. Which of these is more appropriate may depend on the
endpoint of interest. For the endpoints of mutagenicity and skin sensitisation, which feature multiple
alerts believed to cover most of the mechanisms and chemical classes responsible for activity,
‘nothing to report’ may be extrapolated to a negative prediction. For other endpoints, it is necessary
for the user to use expert judgement on the potential inactivity of the query compound.

Recognized in regulation: Lhasa Limited works closely with regulators to ensure that Derek
Nexus continues to meet regulatory requirements for a variety of use-cases. Lhasa Limited is
currently involved in collaborative research with the US Food and Drug Association (under a
Research Collaboration Agreement) and the National Institute of Health Sciences (NIHS) in Japan.

Derek Nexus predictions are accepted by major regulatory agencies, such as the FDA and the
European Medicines Agency (EMA), for the assessment of genotoxic impurities. It is of note that
under the draft ICH M7 guidelines for the assessment of pharmaceutical impurities, the results from
two in silico systems may be used to negate the need for any further in vitro or in vivo testing [ICH
M7 Draft Consensus Guideline].

Derek predictions for multiple toxicological endpoints may be used in support of regulatory
submissions for the High Production Volume Challenge (HPV) Program and the Registration,
Authorization and Evaluation of Chemicals (REACH) regulatory framework. The suitability of
several in silico systems, including Derek Nexus, to support REACH submissions has recently been
evaluated [Rybacka et al].

Validated in research publications: The performance of Derek has been evaluated by several
regulatory agencies, including the FDA [Mathews et al, 2008, Mathews et al 2009] and the NIHS
[Ono et al, Hayashi et al], along with various governmental organisations, commercial organisations
and academic institutions.

These validations have been performed for several toxicity endpoints using both public and
proprietary datasets. Some recent studies are listed below, categorised according to the endpoint
assessed.

e Mutagenicity: Hansen et al, Hillebrecht et al, Snyder, Dobo et al, Valerio, Sutter et al, Ono et
al, Judson et al 2013, Rybacka et al

e Chromosome damage: Judson et al 2013

e Carcinogenicity: Judson et al 2013, Mathews et al 2008, Cotterill et al, Crettaz and Benigni,
Ryback et al

e Skin sensitisation: Judson et al 2013, Teubner et al, Rorije et al, Goebel et al, Langton et al,
Patlewicz et al

e Hepatotoxicity: Greene et al, Mathews et al 2009

e Reproductive toxicity: Rybacka et al

Formal validation of individual alerts in Derek Nexus: For the endpoints of mutagenicity,
chromosome damage, carcinogenicity and skin sensitisation, the positive predictivity (number of
compounds correctly predicted as positive / total number of compounds predicted as positive) of
individual alerts is analysed against appropriate datasets of experimental results and reported in the
alert validation comments. This information allows the user to assess the robustness of an
individual alert.
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TOPKAT®

Methodology: TOPKAT is a data driven system based on experimental data from open literature and
statistically robust and validated QSAR relationships.

Area of Applicability: General chemicals

Brief Description: A statistically based program, TOPKAT® (Toxicity Prediction by Komputer Assisted
Technology) is used in the assessment of acute and chronic systemic toxicity. The program is
structure-based property-sensitive ‘similarity’ measure utilizing a set of descriptors includes Kier and
Hall electrotopological states (e-states), shape, symmetry, molecular weight, and the octanol-water
partition coefficient. Thus, the TOPKAT ® ‘similarity’ reflects similarity of descriptors between two
molecules with respect to a specific property or endpoint. (Demchuk 2011)

Available toxicological endpoints: (Accelrys web site)

e Rodent Carcinogenicity (as a sex and species specific endpoint based on either the NTP
dataset or the FDA dataset)

Weight of Evidence Carcinogenicity
Carcinogenic Potency TD50

Ames Mutagenicity

Developmental Toxicity Potential (DTP)
Rat Oral LD50

Rat Maximum Tolerated Dose

Rat Inhalational LC50

Rat Chronic Oral LOAEL

Skin Irritancy

Skin Sensitization (GPMT)

Ocular Irritancy

Aerobic Biodegradability

Fathead Minnow LC50

Daphnia magna EC50

ViogP

TOPKAT modules provide qualitative (yes/ no) output for rodent carcinogenicity, Ames mutagenicity,
developmental toxicity, skin sensitization, skin irritancy, ocular irritation, and aerobic biodegradability.
The quantitative models provide point estimates for the lowest observed adverse effect level, oral rat
lethal dose, lethal concentration, maximum tolerated dose, and octanol-water partition coefficient (V
log P) along with 95% confidence limits for each.

A number of studies have shown that TOPKAT gives reasonable predictions for a range of chemicals
including pesticides and industrial chemicals (Lapenna, 2010).

In 1996, the FDA’s Office of Cosmetics and Colors (OCAC) conducted a pilot project to evaluate
toxicity predictions for a set of cosmetic ingredients, color additives, and food additive ingredients in six
of the TOPKAT toxicity modules: carcinogenicity, mutagenicity, developmental toxicity potential, skin
irritation, eye irritation, and oral LD50. For this, structurally-defined single ingredients were encoded via
SMILES. Literature toxicity study data quality was assessed according to FDA “Redbook II” criteria for
direct food additives and color additives, and only Red Book Il “grade A” studies (i.e., those met at
least 80% of the proposed guidelines for a particular toxicity test), were selected from the literature for
inclusion in the evaluation test sets with TOPKAT prediction modules. It is worth mentioning that no
Red Book Il guidelines existed for skin or eye irritation.

The experimental data were compared for concordance with the TOPKAT predictions, and
determination of TOPKAT prediction module performance was assessed in terms of specificity and
sensitivity. Confidence in the TOPKAT predictions was evaluated via chemical structure similarity
search and degree of coverage in “Optimum Prediction Space (OPS)”.
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FDA found that:

e TOPKAT 1.5 and 3.0 software offers several toxicity prediction modules highly relevant to
cosmetic ingredient safety assessment. However, some chemical structure assessments
(long-chain aliphatics, polymers and complex ring structures) were not well covered by certain
TOPKAT modules.

e Model-dependent TOPKAT predictions may be outside the OPS for one endpoint, but within
the OPS for another.

e Many of the chemicals selected from literature sources were found to be already present in the
TOPKAT model databases, and TOPKAT predictions were often found to be outside the OPS.

e FDA’s experience with TOPKAT 3.0 and 1.5 toxicity endpoint prediction modules were
summarized in an internal OCAC “Beta Test Final Evaluation Report” (1998), and a 1997
publication (see, ATLA 25, 223.252, 1997).

From this evaluation and other studies, the use of TOPKAT, as with other computational methods,
should primarily be for screening and internal decision-making, and any information generated by
these methods should form part of a more comprehensive package in a ‘weight of evidence’ approach.

References:

e Silvia Lapenna, Mojca Fuart-Gatnik and Andrew Worth, “JRC Scientific and Technical Reports,
“‘Review of QSAR Models and Software Tools for predicting Acute and Chronic Systemic Toxicity”,
2010

e Accelrys Inc. found at http://accelrys.com/mini/toxicology/predictive-functionality.html)

e Eugene Demchuk, Patricia Ruiz, Selene Chou, Bruce A. Fowler, “SAR/QSAR methods in public
health practice”, Toxicology and Applied Pharmacology 254 (2011) 192-197
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TOXICITY ESTIMATION SOFTWARE TOOL (T.E.S.T.) V4.0

Methodology: T.E.S.T is an Expert system that estimates toxicity values using an ensemble of
QSARs. The user inputs the desired structure and the toxicity is estimated using one of seven
available methodologies. The program requires no further external input as the required descriptors
are calculated within the program.

Area of Applicability: General chemicals

Brief Description: The ensemble of QSARs within T.E.S.T are:

e Hierarchical method: The toxicity for a given query compound is estimated using the weighted
average of the predictions from several different models. The different models are obtained by
using Ward’s method to divide the training set into a series of structurally similar clusters. A
genetic algorithm based technique is used to generate models for each cluster. The models are
generated prior to runtime.

e FDA method: The prediction for each test chemical is made using a new model that is fit to the
chemicals that are most similar to the test compound. Each model is generated at runtime.

e Single model method: Predictions are made using a multilinear regression model that is fit to the
training set (using molecular descriptors as independent variables) using a genetic algorithm
based approach. The regression model is generated prior to runtime.

e Group contribution method: Predictions are made using a multilinear regression model that is fit
to the training set (using molecular fragment counts as independent variables). The regression
model is generated prior to runtime.

e Nearest neighbor method: The predicted toxicity is estimated by taking an average of the 3
chemicals in the training set that are most similar to the test chemical.

e Consensus method: The predicted toxicity is estimated by taking an average of the predicted
toxicities from the above QSAR methods (provided the predictions are within the respective
applicability domains).

e Random forest method: The predicted toxicity is estimated using a decision tree which bins a
chemical into a certain toxicity score (i.e. positive or negative developmental toxicity) using a set
of molecular descriptors as decision variables. The random forest method is currently only
available for the developmental toxicity endpoint.

T.E.S.T allows to estimate the value for several toxicity end points:

1. 96 hour fathead minnow LCsq

48 hour Daphnia magna LCsg

48 hour Tetrahymena pyriformis 1GCsgq
Oral rat LDsq

Bioaccumulation factor
Developmental toxicity

Ames mutagenicity

T.E.S.T. also allows to estimate several physical properties, such as Normal boiling point; Density;
Flash point; Thermal conductivity; Viscosity; Surface tension; Water solubility; Vapor pressure;
Melting point.

No g s~N

While each method has its own advantages and disadvantages, providing multiple prediction
methodologies can provide higher confidence in estimates where predicted toxicities are fairly similar
from different methods or alternatively allow the user to select estimates from methods the research
may have more confidence based on personal experience.

Validation results are provided for each end point against the seven methods utilized. (EPA 2102):
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e The Rat LDsq the prediction was the weakest endpoint with no single model or group fitting
the entire training set of 7413 chemicals. The authors suggest this may not be surprising
since this endpoint has a higher degree of experimental uncertainty and has been shown to
be more difficult to model than other endpoints.

e In general, the prediction statistics for the physical properties were best and considered by
the authors to be ‘excellent’.

References:

U.S. Environmental Protection Agency, User's Guide for T.E.S.T. (version 4.1), 2012
http://www.epa.gov/nrmrl/std/qsar/TEST-user-quide-v41.pdf
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VEGA

Methodology: A platform to provide (Q)SARs and other in silico tools for safety assessment of
chemical substances

Area of Applicability: General chemicals

Brief Description:

The VEGA platform has been developed by the Istituto di Ricerche Farmacologiche Mario Negri in
Milan with a number of collaborating organisations and through a series of EU-funded projects. The
models used in VEGA for carcinogenicity and mutagenicity originated in the EU project CAESAR,
(www.caesar-project.eu/), with subsequent improvements and additions from contributing
organisations. The models were developed in line with the OECD principles using high quality
datasets with the aim to use them for regulatory purposes. VEGA platform also incorporates some of
the models in the US-EPA  Toxicity Estimation Software Tool; T.EST
(www.epa.gov/nrmrl/std/gsar/gsar.html).

In addition to mutagenicity and carcinogenicity, VEGA also provides (Q)SAR models for
developmental toxicity, skin sensitisation, as well as ecotox endpoints (e.g. Daphnia magna LC50 and
Fathead minnow LC50), environmental endpoints (bioconcentration factor, ready biodegradability),
and models for calculation of physicochemical parameters (logP).

VEGA also allows user to build own (Q)SAR models using SARpy for classification models, and
CORAL (CORrelation And Logic) for regression based models. In addition, it provides
chemoinformatics tools for SMARTS matching, similarity calculation, etc.

VEGA models generate transparent, reproducible, and verifiable results. The system comprises a
series of tools that have been optimised so that the results obtained for a target compound can also
be related to those for other structurally related compounds. VEGA also has a comprehensive 5-point
validation system that allows the user to assess the reliability of predictions.

Reference:

The Vega Platform www.vega-gsar.eu.
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THRESHOLD OF TOXICOLOGICAL CONCERN (TTC)

Methodology: The Threshold of Toxicological Concern (TTC) approach is a structure-activity
relationship (SAR) tool

Area of Applicability: Food, drugs, cosmetics and industrial chemical.

Brief Description: The Threshold of Toxicological Concern (TTC) approach is a structure-activity
relationship (SAR) tool which originated as a “Threshold of Regulation” for the safety assessment of
components of food-contact materials that pose a negligible risk and for which toxicological data are
unavailable, whereby a substance of known chemical structure and for which valid intake (i.e. chronic
exposure) estimates are available is compared to a group of structurally-related compounds.

The compounds used for comparison are grouped in order of increasing toxicity potency in “Cramer
classes” labelled I, Il and lll, and their classification is based on a detailed, 33-question “decision
tree”. Substances included in Class | have relatively simple chemical structures and possess well-
known metabolic pathways and innocuous end-products, thereby suggesting a low likelihood of
toxicity. Substances in Class Il have intermediate structural complexity, may contain reactive
moieties, but lack the structural attributes generally associated with toxicity. Substances included in
Class Ill have relatively complex chemical structures that permit no strong initial presumption of
safety, or may even suggest significant toxicity (Cramer et al., 1978; Munro et al., 1996). Heavy
metals (e.g. arsenic, cadmium, lead and mercury), proteins, aflatoxin-like compounds, N-nitroso
compounds, azoxy compounds, polyhalogenated-dibenzo-p-dioxins, -dibenzofurans and -biphenyls
are explicitly excluded from the three classes used for TTC evaluations and require substance-
specific data (Kroes et al., 2004).

Using the aforementioned classification method and the toxicological data for 613 substances, a TTC
was defined for each Cramer structural class by plotting the cumulative distribution of the no-
observed-effect levels (NOELS) for the substances and by fitting a log-normal distribution (Munro et
al., 1996). The 5th percentile value for each NOEL distribution was chosen, because it provides a
95% confidence that the NOEL of substances of unknown toxicity within the same Cramer class
would be greater or equal to that of the 5th percentile and, therefore, of a lower toxicity potency. The
5th percentile values were divided by an uncertainty factor of 100 and then adjusted to a 60-kg body
weight to determine TTC values for each Cramer class.

TTC values are defined as the maximum oral doses for which there is no appreciable risk to human
health following daily exposure over a lifetime. Although the TTC concept was originally developed
for the safety assessment of dietary chemical contaminants, it may also be suitable to assess or
prioritize the requirement for toxicity testing and assessment for chemicals that are present in
cosmetic ingredients or final formulations, including contaminants or degradation products (Kroes et
al., 2007). In fact, a preliminary analysis of the applicability of the TTC approach to cosmetic and
personal care products has already been undertaken as part of the COSMOS project. It was
concluded that the current TTC approach is broadly applicable to cosmetics, but that improvements
(e.g. quality control of core datasets, moderate alterations/additions of Cramer classification scheme,
and development of clear guidance for its application) could be made (Worth et al., 2012).

One possible in silico approach applicable to cosmetic products involves the use of ToxTree, an
open-source software commissioned by the European Commission Joint Research Centre (JRC)
which estimates toxic hazard of chemical substances, to rapidly estimate the Cramer class of the
chemical structure of interest and to determine the associated TTC value. The chronic systemic dose
for this chemical can then be modelled (e.g. using ConsExpo), and the outcome of the chosen
scenario can be compared to the TTC value. If the chronic systemic dose is lower than the TTC
value, toxicity can be excluded solely based on this assessment. When the modelled chronic
systemic dose is greater than the TTC value, toxicity cannot be excluded, and a higher tier approach
is needed to refine the model. Higher tier approaches are presented in other sections of this
document.

The robustness of the Threshold of Toxicological Concern (TTC) approach has been confirmed for
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rodent carcinogens (Cheeseman et al., 1999). The robustness of TTC values for various specific
non-cancer endpoints has been reviewed in details by the European Food Safety Authority (EFSA,
2012). As for any modelling approach, both the selection of a suitable TTC value and the reliability of
the structural alert scheme depend on the robustness and comprehensiveness of the underlying
database (MST, 2011). Theoretically, the TTC approach could be used to assess the safety of any
chemical, if the chemical structure is known and human exposure can be accurately and robustly
estimated.

The TTC approach, initially introduced as a “Threshold of Regulation”, has gained broad international
recognition (e.g. US EPA; Danish Ministry of the Environment (MST); European Commission) and
has been reviewed and improved through peer-reviewed scientific publications (e.g. Cheeseman et
al., 1999; Cramer et al., 1978; Kroes et al., 2004, 2007; Munro et al., 1996).
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Annex-II: Brief Description of Relevant Projects in ICCR
Jurisdictions

EU1 - COSMOS
Project description:

The COSMOS project (http://www.cosmostox.eu/), jointly funded by the European Commission and
Cosmetics Europe, is developing publicly available computational workflows based on the integrated use
of open-access and open-source models for the prediction of repeated dose toxicity (Anzali et al, 2012).
This includes: a) the establishment of an inventory of cosmetic substances (including identifiers and
chemical structures) and a repeat dose toxicity database (including oral and dermal data); b) the
development of novel ways of establishing thresholds of toxicological concern (TTC), based on innovative
chemistry based prediction approaches and biokinetic modelling.

Key reference:

Anzali S, Berthold MR, Fioravanzo E, Neagu D, Péry A, Worth AP, Yang C, Cronin MTD & Richarz A-N
(2012) Development of computational models for the risk assessment of cosmetic ingredients. IFSCC
Magazine 15 (4): 249-255. Available at: http://www.cosmostox.eu/publications/printed/

Timeframe: January 2011-December 2015

Contact: Prof. Mark Cronin, Liverpool John Moores University, UK

EU2 - ANTARES
Project description:

ANTARES (http://www.antares-life.eu/) was an EC (DG Environment) funded project which has assessed
the validation characteristics of a range of (Q)SAR models for the ecotoxicological, toxicological and
environmental endpoints that are relevant to REACH. Human health endpoints considered were acute
oral toxicity (rodent LD50), mutagenicity (Ames test) and carcinogenicity (rodent bioassay). A wide range
of software tools were evaluated, including both commercial and non-commercial tools, and taking
applicability domain considerations into account wherever possible.

Timeframe: January 2010-December 2012

Contact: Prof. Emilio Benfenati, Mario Negri Institute, Milan, Italy

Canada — Repeated-dose dermal toxicity

Project description:

The objective of this project was to determine whether the Cramer classification scheme can be applied
to systemic toxicity resulting from dermal exposure. For this purpose, a reference database containing
NO(A)EL values for systemic toxicity subsequent to dermal administration in various mammalian models
(i.e. rats, mice and rabbits) was assembled by Health Canada, whereby 52 of the 140 substances (37%)
are known to be used in cosmetic products available on the Canadian market. The project demonstrated
that, although repeated-dose dermal toxicity data are not readily available, the robust relationship
between oral and dermal NOAELs in the Cramer classification scheme supports the use of the oral
Threshold of Toxicological Concern (TTC) for cosmetic products intended for dermal application.

Key reference:

Faith. M. Williams, A. Chiodini, G. Barrett, M.T.D, Cronin, R.H. Guy, N. Montiero-Riviere, J. Plautz, C.
Roper, H. Rothe, D. Rua, J. Westerhout , C. Yang (in preparation). Application of a decision tree with
systemic exposure prediction to oral TTC for the safety evaluation of cosmetic chemicals (tentative title).
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Timeframe:  Manuscript in preparation.
Contact: Gordon Barrett, Health Canada, Canada.

BRAZIL — RENAMA
Project description:

The National Network on Alternative Methods (RENAMA — Rede Nacional de Métodos Alternativos),
created in 2012 by a Ministry of Science, Technology and Innovation act, promotes initiatives to develop
the use of alternative methods in Brazil and efforts to validate then in the regulatory scenario. Recently,
RENAMA worked with the Brazilian Biosciences National Laboratory (LNBio — Laborat6rio Nacional de
Biociéncias) selecting proposals of in silico tests focused on the prediction of toxicological and
pharmacokinetic properties of molecules to be used as drugs or cosmetics. These projects are still to be
initiated, but represent a strong effort to promote the consolidation of in silico approaches in Brazil.

Key Reference (Portuguese only):
http://renama.org.br/
http://Inbio.cnpem.br/wp-content/uploads/2014/01/EDITAL-RENAMA_LNBio.pdf



